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Vector electromagneticX waves
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A vector propagation scheme for describing electromagnetic nondiffracting beams (X waves! is introduced.
In particular we show that, from the knowledge of the transverse field components on a given transverse plane
and at a fixed instant, it is possible to predict the whole electric field everywhere which in particular allows us
to investigate theimagingproperties of nondiffracting beam. Furthermore, we show that the longitudinal field
component crucially depends on the pulse velocity and that it can be neglected only if the velocity is slightly
greater thanc. The proposed formalism is tested by means of two examples, the vector fundamental and
GaussianX waves which admit analytical treatment. As an application of the propagation scheme, we derive in
closed form the expressions for the field propagator showing that its transverse component formally coincides
with one of the scalar fundamentalX wave.
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I. INTRODUCTION

The investigation of nondiffracting three-dimension
waves has attracted the interest of many researchers in
past decades starting from the pioneering paper of Du
et al. @1#, in which they reported the first experimental inve
tigation of an optical monochromatic diffraction-free bea
whose existence had been theoretically predicted by Stra
@2#. In the polychromatic realm, the most interesting gen
alization of the original monochromatic Bessel beam are
limited diffraction pulses introduced by Lu and Greenle
@3,4# (X waves!. An X wave is a solution of the wave equa
tion which rigidly travels along a direction~say thez axis!
with a fixed velocity; this explains why these fields ha
been investigated, experimentally and theoretically, both
acoustics@5,6# and in electromagnetism@7–11#.

From a theoretical point of view, many approaches ha
been proposed for describing nondiffracting waves@12–15#
and their main propagation features have been underst
The most striking properties are as follows:~a! nondiffract-
ing waves have a velocityV which is greater than the veloc
ity c of plane waves traveling in the medium and~b! that
their total energy turns out to be infinite. Both of these pro
erties are direct consequences of thek-space structure o
diffraction-free fields: they are a superposition of all t
plane waves whose wave vectors belong to a fixed con
semiaperture anglec. These plane waves constructively i
terfere only at the cone axis and it is straightforward to pro
that the intersection point of any wavefront with thez axis
travels along the axis itself with a velocity equal toc/cosc
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.c. In the case of electromagnetic waves this property
often referred to as the superluminality of nondiffractin
pulses. Besides, the fact that the allowed plane waves m
belong to a surface~a cone! in the three-dimensionalk-space
immediately implies~due to the Parseval theorem! that the
total energy of the field is divergent. At a first glance both~a!
and~b! properties of nondiffracting beams seem to be seri
shortcomings against practical realizability and usefulnes
these rather exotic pulses. Superluminality~a! seems to be a
violation of the special theory of relativity and, particularl
of the relativistic causality; the infinite content of energy~b!,
on the other hand, seems to make these objects definiti
not physical. However, it is obvious that no violation of rel
tivity can arise since nondiffracting pulses areexactsolutions
of the relativistic covariant three-dimensional wave equat
@8#. As far as~b! is concerned, we note that nondiffractin
beams clearly exhibit astationarycharacter. In fact, the only
temporal dynamics is a pure translation of the whole pac
at velocityV. It is obvious that a stationary state is rigorous
achieved by any physical system only after an infinite lo
transitory during which the sources continuously provide
ergy to the system. An analogous situation in optics is tha
a monochromatic paraxial beam which is obviously statio
ary and also possesses an infinite energy; however the m
is widely employed to describe actual fields. Therefore,
conclude that nondiffracting beams describe limiting case
actually feasible fields. The analogy between nondiffract
waves and paraxial beams goes a step further upon no
that both the fields posses finite powers over any transv
plane.

In the present paper we analyze electromagnetic non
fracting beams in the light of two main features. First, t
electromagnetic field has an intrinsic vector structure and
©2004 The American Physical Society08-1
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CIATTONI, CONTI, AND DI PORTO PHYSICAL REVIEW E69, 036608 ~2004!
the case of nondiffracting beams, the coupling among
three Cartesian components of the electric field must be
fected by the absence of diffraction. To the best of o
knowledge, the vector structure of theX waves has been
investigated only by Recami in Ref.@7# where the author
imposes the shape invariance condition to the Hertz pote
and then deduces the electromagnetic field in the case o
fundamentalX wave ~which admit an analytical treatment!.
Second, we are interested in theimagingproperties of non-
diffracting beams. All theoretical approaches describe a n
diffracting beam as a suitable superposition of monoch
matic Bessel beams weighted by an arbitrary funct
playing the role of a spectrum. However, the arbitrariness
the spectrum has never been exploited for relating the fiel
an arbitrary transverse plane to its distribution over anoth
transverse plane or, in other words, to investigate the im
ing properties of a nondiffracting beam. The only attempt
this sense is furnished by Saari and Sonajalg in Ref.@16#,
where the authors employ the pulsed Bessel beams the
troduce as a point-spread function which shows a w
constrained support but, at the same time, has an exce
capability to maintain the image focused without any spre
over large propagation distances.

Starting from an exact vector solution of Maxwell equ
tions in vacuum, we impose each Cartesian componen
fulfill the diffraction-free condition, i.e., to depend onz andt
only through the combinationZ5z2Vt; thus, we obtain an
expression representing any vector electromagnetic non
fracting beam. We show that the field angular spectrum
two dimensional and that the spectrum of the transve
components (x and y components! coincides with the two-
dimensional Fourier transform of the field at the planeZ
50. On the other hand, the spectrum of the longitudinaz
component is easily related to the spectrum of the transv
part. Therefore the knowledge of the transverse part of
field at Z50 is sufficient to predict the nondiffracting bea
for all Z and thus we are in the position to investigate
imaging properties. As a second relevant result, we ob
that the longitudinal component has an order of magnit
which is roughly that of the transverse part multiplied
AV2/c221, thus concluding that the packet velocity is cr
cial in fixing the relevance of thez component. Therefore
the longitudinal component is negligible only ifV is slightly
greater thanc and becomes dominant for velocity muc
larger thanc. As a further result we derive a relation co
necting the field longitudinal component to the transve
ones in terms of an integral transform at each transve
plane. As examples to apply the proposed approach we
vestigate two nondiffracting beams; the first is the vec
generalization of the well-known family of multiple tempor
derivatives of the fundamentalX wave introduced by Lu and
Greenleaf@4#, whereas the second deals withX waves whose
distribution atZ50 shows a Gaussian profile.

Our scheme for describing electromagneticX waves is, in
addition, exploited to introduce a propagator approach.
order to place into evidence the fact the the whole non
fracting beam is fixed by the boundary distribution of t
transverse part of the field atZ50, we derive a genera
relation expressing the field at an arbitrary transverse p
03660
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as an integralZ-dependent transform of the boundary tran
verse field distribution. More precisely we derive the expr
sion for the field propagators in closed form and we find t
the transverse component propagator coincides with the t
poral derivative of the fundamentalX wave. This appears to
be a relevant result since it points out that the role of
fundamentalX waves, in the general theory of nondiffractin
beam, is more important than an elegant analytical resul

II. VECTOR X WAVES

Let us start by considering an exact integral representa
of the electromagnetic field propagating in vacuum. For o
purpose, it is convenient to write the complex analytic sig
Ê of the electric fieldE5Re@Ê# in the form

Ê'~r' ,z,t !5
]

]z
F'~r' ,z,t !,

Êz~r' ,z,t !52“'•F'~r' ,z,t !, ~1!

where Re is the real part,r'5xêx1yêy , “'5]xêx1]yêy ,
Ê'5Êxêx1Êyêy , andF'5Fxêx1Fyêy is a suitable analytic
signal. It is easy to prove that Maxwell’s equations are s
isfied if

F'~r' ,z,t !5E
0

`

dvE d2k'eik'•r'ei (kzz2vt)F̃'~k' ,v!,

~2!

wherek'5kxêx1kyêy , d2k'5dkxdky , F̃'5F̃xêx1F̃yêy is
an arbitrary vector spatio-temporal spectrum, andkz

5Av2/c22uk'u2 ~where we choose the main branch of t
complex square root!. Note thatF' is a superposition of all
the plane waves whosez component of the wave vector i
positive ~homogeneous waves! or imaginary ~evanescent
waves! so that, since in Eq.~2! the frequenciesv are posi-
tive, the field represents the most general pulse propaga
from left to right along thez axis. It is also worth noting tha
the introduction ofF' allows a complete vector descriptio
of the electromagnetic pulse.

Let us now investigate the dynamics of nondiffractin
electromagnetic pulses. The standard definition of anX wave
is a solution of the three-dimensional wave equation fulfi
ing the conditionE(r' ,z,t)5E(r' ,z2Vt), expressing the
fact that each Cartesian component of the electric field m
be a shape invariant pulse. From Eq.~1! it follows that this
condition is attained if the fieldF' is nondiffracting, that is
to say if

F'~r' ,z,t !5F'~r' ,z2Vt!. ~3!

Since Eq.~2! describes any pulse propagating along the po
tive z axis, it is evident thatF' fulfills Eq. ~3! only if the
relation kz5v/V holds for all its plane wave component
that is, if the spectrum is given by

F̃'~k' ,v!5Ã'~k' ,v!dS kz~v,k'!2
v

VD , ~4!
8-2
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VECTOR ELECTROMAGNETICX WAVES PHYSICAL REVIEW E69, 036608 ~2004!
whered(j) is the Dirac delta function andÃ' is an arbitrary
complex vector. Equation~4! is easily interpreted as the re
quirement that all the plane waves ofF' share a common
phase velocity along thez axis (vz5c2kz /v) given byc2/V.
Sinceuvzu,c, we recover the conditionV.c expressing the
well-known superluminality of theX waves. Note also tha
Eq. ~4! implies kz5huk'u, where h5(V2/c221)21/2, so
that the wave vectors of all the plane waves forming a n
diffracting beam belong to a cone whose semiaperture a
c ~called in literature Axicon angle! is given by the relation
cotc5h @17#. Introducing Eq.~4! into Eq. ~2! and perform-
ing the integral overv we readily get

F'~r' ,Z!5E d2k'eik'•r'eihuk'uZ f̃'~k'!, ~5!

whereZ5z2Vt is the longitudinal distance in the~superlu-
minal! reference frame where theX wave is at rest,uk'u
5Akx

21ky
2 and f̃'(k')5(h2/V)Ã'(k' ,hVuk'u). Note that

f̃' is an arbitrary complex vector and, in order to underst a
its physical meaning, it is sufficient to substitute Eq.~5! into
the first of Eqs. ~1! @obtaining a shape invariant fiel
Ê'(r' ,z,t)5Ê'(r' ,Z)], to evaluate it atZ50 and to invert
the resulting Fourier integral, thus getting

f̃'~k'!5
1

ihuk'u
Ẽ'~k'!, ~6!

where

Ẽ'~k'!5
1

~2p!2E d2r'e2 ik'•r'Ê'~r',0! ~7!

is the two-dimensional Fourier transform of the analytic s
nal of the transverse electric field evaluated atZ50. Substi-
tuting Eq.~6! into Eq.~5! and the resulting field into Eqs.~1!
we obtain

Ê'~r' ,Z!5E d2k'eik'•r'eihuk'uZẼ'~k'!,

Êz~r' ,Z!5
1

hE d2k'eik'•r'eihuk'uZS 2
k'

uk'u D •Ẽ'~k'!.

~8!

Equations~8! contain the expression for the most gene
electromagnetic nondiffracting pulse and they deserve s
discussion. First, note that if the transverse fieldÊ' is known
at Z50 ~or, equivalently, at an arbitrary plane orthogonal
the direction of propagation!, Eq. ~7! yields Ẽ'(k') and
hence Eqs.~8! furnish the field at allZ. Thus, the knowledge
of Ê' on a transverse planeat a given instantis sufficient to
predict the pulse evolution. This property does not gener
hold for a pulse propagating in vacuum whose descriptio
possible only if the transverse electric field is known at a
time on a given plane. The physical origin of this peculiar
lies in the ‘‘rigid’’ motion characterizing nondiffracting
pulses. Therefore theX wave description reduces to a stead
03660
-
le

d

-

l
e

ly
is
y

-

state problem in its rest frame where the knowledge of
field on a transverse plane is sufficient to predict the fi
everywhere. In this perspective, it is also worth noting th
because of the arbitrariness of the boundary distribut
Ê'(r',0), optical X waves allow to accomplish a sort
diffraction-free transmission of arbitrary two-dimension
images@16#.

A related feature of nondiffracting pulses is a stro
space-time coupling@18# characterizing their structure. In or
der to clarify this point, let us consider one of the Cartes
component of the field in Eqs.~8! ~say thex components! at
the planez50 at any instantt ~so thatZ52Vt), that is to
say

Êx~r',0,t !5E d2k'eik'•r'e2 ihVuk'utẼx~k'!. ~9!

From this expression we note that the spatial and temp
features of the pulse~such as the transverse width or the tim
duration! are related to the exponentials containingr' andt,
respectively; both the exponentials containk' and are
weighted by the spectrumẼx . Therefore the spatial and tem
poral behaviors of the pulse are dictated byÊx(r',0) at the
same time, resulting in a high correlation between spatial
temporal features~space-time coupling!.

The field components in Eqs.~8! are given by Fourier
integrals and, as a consequence, they are square integr
This implies that the power carried by the field is finite.
this sense, theX waves are more realistic than their mon
chromatic counterpart, the Bessel beams, whose powe
infinite. The power of thej-field component (j 5x,y,z) over
a transverse plane at fixedZ is Wj (Z)5*d2r'uÊj (r' ,Z)u2
that is, with the help of Eqs.~8! and the Parseval theorem

Wj~Z![Wj5~2p!2E d2k'uẼj~k'!u2, ~10!

showing that thepower of any Xwave does not depend onZ.
In turn, the total energyU j5*2`

1`dZ Wj (Z) is a divergent
quantity as it was to be expected in connection with
stationary nature of the considered fields. In fact, a station
state is rigorously attained only after an infinite transito
evolution during which the sources continuously provide e
ergy to the field, thus justifying the infinite amount of energ
In this perspective, theX wave situation~which is usually
highly nonmonochromatic! is quite close to that of a mono
chromatic paraxial field in vacuum which is clearly a statio
ary field and generally possesses an infinite amount of
ergy ~even if its power over any transverse plane is finite a
independent ofz). In this perspective it is interesting to com
pare the first of Eqs.~8! with the expression for the analyti
signal associated to a monochromatic paraxial beam~propa-
gating in vacuum!, namely,

Ê'~r' ,z,t !5ei (k0z2vt)E d2k'eik'•r'e2 i uk'u2/2k0zẼ'~k'!,

~11!
8-3
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CIATTONI, CONTI, AND DI PORTO PHYSICAL REVIEW E69, 036608 ~2004!
wherev is the frequency of the field whereask05v/c. The
formal analogy between the slowly varying amplitude of E
~11! and the first of Eqs.~8! is evident.

From the second of Eqs.~8! we note that the longitudina
componentÊz of the X wave is completely fixed by the
boundary transverse componentsÊ'(r',0), in agreement
with a well-known property of the electromagnetic field
vacuum @19#. The expression forÊz reveals that, roughly
speaking,uÊzu;uÊ'u/h so that the faster theX wave the
greater is the longitudinal component in comparison with
transverse ones. This feature can be understood bearin
mind that anX pulse is the superposition of all the plan
wave whose wave vectors belong to a cone whose sem
erture angle isc5arctan(1/h)5arctanAV2/c221 so that the
faster theX wave the more open is the cone. Since in vacu
the electric field of each plane waves is orthogonal to
wave vector~transversality!, the more the cone is open th
greater is the contribution of each plane wave to the lon
tudinal component of the electric field. We conclude that
longitudinal component of the electromagneticX wave can
be neglected only ifV is slightly greater thanc, showing that
the scalar approach generally fails. If, for example,V
,1.005c, we haveh.10 proving that the longitudinal com
ponent is negligible; on the other hand, ifV.A2c it follows
that h,1 so that the longitudinal component tends to b
come dominant.

The connection between longitudinal and transverse c
ponents can be expressed in a significant way combining
first and the second of Eqs.~8!, thus getting~see Appendix
A!

Êz~r' ,Z!5
1

2p ihE d2r'8
r'2r'8

ur'2r'8 u3
•Ê'~r'8 ,Z!, ~12!

which is a relation givingÊz at an arbitrary transverse plan
~i.e., for Z fixed! once theÊ' is known on the same plane

III. TWO EXAMPLES OF VECTOR X WAVES

We wish now to apply the approach introduced in t
above section to the relevant cases of vector fundamentX
waves and GaussianX waves.

A. Vector fundamental X waves

Let us consider the family ofX waves whose spectrum i
given by

Ẽ'
(n)~k'!5

E0s2

2p
~suk'u!n21e2suk'uêx[Ẽx

(n)~k'!êx ,

~13!

wheren is a positive integer, whereasE0 ands.0 are two
real constants. Substituting Eq.~13! into the first of Eqs.~8!
we get~see Appendix B!
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(n)~r' ,Z!5E0S s
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]Zn
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@~s2 ihZ!21ur'u2#1/2
,

~14!

which are easily recognized to be the well-known family
derivatives of theX wave originally introduced by Lu and
Greenleaf@4,17#; we will refer to this family of limited dif-
fraction beams as the fundamentalX waves. Therefore, Eq
~13! contains the spectrum of the electromagneticX waves
whose transverse part reproduces the fundamentalX waves.
The longitudinal component of the electric field is obtain
after substituting Eq.~13! into the second of Eqs.~8!,
namely,

Êz
(0)~r' ,Z!5E0

sx

ihur'u2 H 12
~s2 ihZ!

@~s2 ihZ!21ur'u2#1/2J ,

Êz
(n)~r' ,Z!5

is

h

]

]x
Ex

(n21)~r' ,Z! for n>1. ~15!

Equations~14! and~15! contain the exact expressions for th
electromagnetic fundamentalX waves and they represent th
vector generalization of the well-known scalar fundamen
X waves. The parameters is directly related to the width of
the pulse atZ50 ~waist! and it is worth noting that the fields
depend onr' andZ only through the dimensionless quan
ties r' /s andZ/s. Note that the firstX wave of the family
(n50) has a diverging power at each transverse plane~at Z

fixed! since, for ur'u large, Êx
(0);ur'u21. For n>1 the X

waves of this family are not affected by the above shortco
ing and approach physically realizable fields. In Fig. 1
plot the normalized Cartesian componentsEx(x,0,Z)/E0 and
Ez(x,0,Z)/E0 of the electric field@real parts of Eqs.~14! and
~15!# of the fundamentaln51 vectorX waves evaluated for
variousV/c. The x component obviously shows the typic
spreading of the fundamentalX waves. Thez component, on
the other hand, vanishes atZ50 @as a consequence of th
reality of the spectrum in Eq.~13!#, then rapidly grows for
increasingZ.0 up to a maximum, and finally vanishes asZ
goes to infinity. Note that, as expected, the faster theX wave
the greater is the maximum of the longitudinal compone
Since at the planex50 Ez vanishes, the longitudinal com
ponent is not peaked at the origin but exhibits two symme
cal lobes. In Fig. 2 we report the level plot ofuEzu/E0 of the
n51 vectorX wave ~characterized by a velocityV51.05c)
at three transverse planes, showing the above-mentio
lobes and their evolution.

B. Vector GaussianX wave

Consider now anX wave whose boundary field distribu
tion is

Ê'~r',0!5E0e2ur'u2/2s2
êx , ~16!

where E0 and s.0 are real constants. This is a Gaussi
distribution of waists centered atr'50 and its spectrum is
readily obtained by inserting Eq.~16! into Eq. ~7!, namely,
8-4
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FIG. 1. Normalized Cartesian
components Ex(x,0,Z)/E0 and
Ez(x,0,Z)/E0 of the electric field
@real parts of Eqs.~14! and ~15!#
of the fundamentaln51 vectorX
waves evaluated for variousV/c.
Note that the faster theX wave the
greater is the longitudinal compo
nentEz .
s
a-
n
-

by

l

ere-
we

m-

xis
Ẽx~k'!5
E0s2

2p
e2(1/2)s2uk'u2. ~17!

Substituting Eq.~17! into Eqs.~8!, we obtain~see Appendix
C!

Êx~r' ,Z!5E0(
n50

` S hZ

s D n~ iA2!n

n!
GS n12

2 D
3 1F1S n12

2
,1;2

ur'
2 u

2s2D ,

Êz~r' ,Z!5
E0

ihA2
S x

s D (
n50

` S hZ

s D n~ iA2!n

n!
GS n13

2 D
3 1F1S n13

2
,2;2

ur'
2 u

2s2D , ~18!
03660
where G(j) is the Euler Gamma function, wherea

1F1(a,b;j) is the hypergeometric confluent function. Equ
tions ~18! contain the expressions for the vector GaussiaX
wave. Note that, as for the fundamentalX waves, the Gauss
ian X wave depends onr' and Z only through the dimen-
sionless quantitiesr' /s andZ/s. Note, in addition, that the
power of each component is finite as it is clearly shown
substituting Eq.~17! into Eq. ~10!. Even if the field compo-
nents are given by series, Eqs.~18! are suitable for numerica
analysis since it can be proven that for (hZ/s)&8 the series
can be truncated up to the first two hundred terms and th
fore easily computable by a standard computer. In Fig. 3,
plot the normalized electric field components@real parts of
Eqs. ~18!# of the vector GaussianX wave, for variousZ/s.
The evolutions of both the transverse and longitudinal co
ponents are quite similar to that of then51 fundamentalX
wave.

The expression of the field on the propagation a
~i.e., for r'50) can be expressed in closed form as~see
Appendix C!
8-5
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FIG. 2. Level plot ofuEzu/E0

of the n51 vector X waves at
three transverse planes for a v
locity V51.05c.
fo
.

ve
c

ble
nd-
Êx~0,Z!5E0F11 iApS hZ

A2s
D e2(hZ/A2s)2

erfcS hZ

iA2s
D G ,

~19!

whereasÊz(0,Z)50; here erfc(j) is the analytical continu-
ation of the error function erfc(j)5(2/Ap)*j

`du exp(2u2).
In Fig. 4 we plot the normalized electric field@real part of
Eq. ~19!# of the vector GaussianX wave as a function of the
normalized propagation distance, together~for comparison!
with the analogous field for then51 fundamentalX wave.

IV. PROPAGATOR APPROACH

In Sec. II we have developed a fully vectorial scheme
describing any electromagneticX wave traveling in vacuum
Our approach allows us to evaluate the field for allr' andZ,
once the transverse part of the field is known atZ50, and is
essentially based on the use of the Fourier integral. Howe
although intuitive and efficient, the use of the Fourier spa
03660
r

r,
e

can be avoided, as usual in optics, by introducing a suita
propagator directly relating the propagated field to its bou
ary distribution. This goal is achieved by substituting Eq.~7!
into Eq. ~6! and the resulting spectrum into Eq.~5!, thus
getting

F̂'~r' ,Z!5E d2r'8 G~r'2r'8 uZ!Ê'~r'8 ,0!, ~20!

where

G~R'uZ!5
1

~2p!2ih
E d2k'

eik'•R'

uk'u
eihuk'uZ ~21!

with R'5r'2r'8 ). The integral in Eq.~21! turns out to be
given by ~see Appendix D!

G~R'uZ!5
1

2p ih

1

@~e2 ihZ!21uR'u2#1/2
, ~22!
FIG. 3. Normalized Cartesian
components Ex(x,0,Z)/E0 and
Ez(x,0,Z)/E0 of the electric field
@real parts of Eqs.~18!# of the vec-
tor GaussianX waves evaluated
for variousV51.05c.
8-6
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where the limit e→01 has to be taken afterG has been
convolved withÊ'(r',0) in Eq.~20!. Inserting the resulting
field F̂' into Eqs.~1! we readily get

Ê'~r' ,Z!5E d2r'8 G'~r'2r'8 uZ!Ê'~r'8 ,0!,

Êz~r' ,Z!5E d2r'8 Gz~r'2r'8 uZ!•Ê'~r'8 ,0!, ~23!

where

G'~R'uZ!5
1

2p

~e2 ihZ!

@~e2 ihZ!21uR'u2#3/2
,

Gz~R'uZ!5
1

2p ih

R'

@~e2 ihZ!21uR'u2#3/2
. ~24!

Equations~24! contain theexact expressionsfor the X wave
propagators.

The physical interpretation of the propagators is ea
obtained by considering anX wave whose boundary field i
of the form Ê'(r',0)5E0d(r')êx which, substituted in Eq
~20!, yields Ê'(r' ,Z)5E0G'(r'uZ)êx and Êz(r' ,Z)
5E0Gz(r'uZ)•êx ; therefore the propagators represent anX
wave whose boundary distribution is ad peak aroundr'

50. This is consistent with the fact thatG'(r'u0)
5e/(2p)(e21ur'u2)23/2 is, in the limit e→01, a represen-
tation of the two-dimensional Diracd function. ForZ.0 e
is obviously unessential and we directly haveG'(r'uZ)
5(hZ)/(2p i )@ ur'u22(hZ)2#23/2 and Gz(r'uZ)
5R' /(2p ih)@ ur'u22(hZ)2#23/2. We observe that the orde
of magnitude of the longitudinal component is that of t
transverse one divided byh, in agreement with the consid
erations of the Sec. II.

It is worth noting that the fieldsG(r'uZ) and G'(r'uZ)
essentially coincide with the zeroth and first fundamentaX
waves~see Eq.~14!!. Therefore, the fundamentalX waves
are more relevant than simple analytical examples since

FIG. 4. On axis normalized transverse componentEx(0,Z)/E0

of the electric field as a function ofz5hZ/(A2s) for the vector
Gaussian and fundamentaln51 X waves.
03660
y

in

the general theory, they play the role of propagators~once
their width, proportional toe, is assumed to go to zero!.

V. CONCLUSIONS

Starting from an exact solution of Maxwell’s equation
describing an arbitrary pulse propagating along the posi
z axis in vacuum, with the aid of the propagation invaria
requirement, we have obtained a vectorial express
describing any electromagnetic limited diffraction bea
~X wave! in free space. Our scheme predicts that, once
distributions of thex- andy-field components are known at
transverse plane of the reference rest frame of the pulse
vectorX wave is known everywhere and at every time. T
physical origin of this peculiar feature turns out to be rela
to the essential stationary character ofX waves. Furthermore
we have shown that the longitudinalz- field component can
be obtained from its transverse counterparts through a s
able integral transform whose kernel is derived in clos
form. In addition, theX wave velocity has been shown t
affect in a relevant way the magnitude of the longitudin
component; the faster theX wave the greater thez compo-
nent in comparison with the transverse part. In particular,
have demonstrated that the longitudinal component can
be neglected if theX wave ‘‘velocity’’ is greater thanA2c.
The vector propagation scheme has been employed for
scribing two examples of vectorX waves, the family of fun-
damentalX waves and the Gaussian one: the former rep
sents the electromagnetic vector generalization of the w
known X waves of Lu and Greenleaf, whereas the lat
example deals with the description of anX wave whose
transverse part distribution is Gaussian over a transv
plane. Both these examples exhibit the well-knownX shaped
profile in the transverse part of the field, whereas the sh
of the longitudinal component exhibits two symmetric
lobes ~with respect to the plane containing the pulse pol
ization direction and thez axis! diverging from thez axis. As
a further application of the proposed propagation scheme
have set up a propagator approach. More precisely, we h
derived closed-form expressions directly joining the vectoX
wave in the rest frame to the distribution of its transve
part over a transverse plane. Apart from the conceptual va
of this approach, it is worth noting that the propagator ker
for the transverse part is deeply connected to then51 fun-
damentalX wave.
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APPENDIX A: DERIVATION OF EQ. „12…

Inverting the two-dimensional Fourier integral of the fir
of Eqs.~8! we get
8-7



c-

th

0

ly
n
in

f
-

e

r

CIATTONI, CONTI, AND DI PORTO PHYSICAL REVIEW E69, 036608 ~2004!
eihuk'uZẼ'~k'!5
1

~2p!2E d2r'8 e2 ik'•r'8 Ê'~r'8 ,Z!,

~A1!

which, substituted into the second of Eq.~8!, yields ~after
interchanging the integration order!

Êz~r' ,Z!5E d2r'8 W'~r'2r'8 !•Ê'~r'8 ,Z!, ~A2!

where

W'~R'!52
1

h~2p!2E d2k'

eik'•R'

uk'u
k' ~A3!

and R'5r'2r'8 . Exploiting a well-known property of the
Fourier integral, we change Eq.~A3! into

W'~R'!5
i

h~2p!2
“'E d2k'

eik'•R'

uk'u

[
i

h~2p!2
“'Q~R'!. ~A4!

The integral definingQ can be easily evaluated by introdu
ing polar coordinates according tok'5k(êxcosu1êysinu)
andR'5R(êxcosw1êysinw), thus getting

Q~R'!5E
0

`

dkE
0

2p

eikRcos(u2w)52pE
0

`

dk J0~kR!5
2p

R
,

~A5!

whereJ0(j) is the Bessel function of the first kind of zero
order. Substituting Eq.~A5! into Eq. ~A4! and the conse-
quent result into Eq.~A2!, we readily obtain Eq.~12!.

APPENDIX B: TRANSVERSE AND LONGITUDINAL
COMPONENTS OF FUNDAMENTAL X WAVES

Inserting Eq.~13! into the first of Eqs.~8! we obtain

Ex
(n)~r' ,Z!5

E0sn11

2p~ ih!n

]n

]ZnE d2k'

eik'•r'

uk'u
e2(s2 ihZ)uk'u

[
E0sn11

2p~ ih!n

]n

]Zn
T~r' ,Z,s!. ~B1!

In order to evaluate the integral definingT, we use polar
coordinates, according tok'5k(êxcosu1êysinu) and r'

5r (êxcosw1êysinw), thus getting

T~r' ,Z,s!52pE
0

`

dk e2(s2 ihZ)kJ0~kr !, ~B2!

where the representationJ0(j)5(1/2p)*0
2pdu exp@ij cos(u

2w)# for the the Bessel function of the first kind of order
has been exploited. The integral appearing in Eq.~B2! is the
03660
Laplace transform of the Bessel function, name
*0

`dke2skJ0(kr)5(s21r 2)21/2, whose convergence domai
is Re(s).0 ~the square root being evaluated on its ma
branch!. Equation~B2! thus yields

T~r' ,Z,s!52p
1

@~s2 ihZ!21r 2!] 1/2
, ~B3!

which, inserted into Eq.~B1!, furnishes the transverse part o
the electric field as in Eq.~14!. In order to derive the expres
sion for the longitudinal component, let us substitute Eq.~13!
into the second of Eqs.~8!. For n>1 we get

Ez
(n)~r' ,Z!52

E0sn11

2p~ ih!n

]

]x

]n21

]Zn21

3E d2k'

eik'•r'

uk'u
e2(s2 ihZ)uk'u. ~B4!

Comparing this expression with Eq.~B1! we readily get the
second of Eqs.~15!. For n50 we obtain, after passing to
polar coordinates,

Ez
(0)~r' ,Z!52

E0s

2phE0

`

dke2(s2 ihZ)k

3E
0

2p

dueikr cos(u2w)cosu. ~B5!

The integral overu can be performed by exploiting th
Anger-Jacobi relation exp@ikr cos(u2w)#
5(n52`

n5` inJn(kr)exp@in(u2w)# thus obtaining

Ez
(0)~r' ,Z!52

E0s

ih
coswE

0

`

dke2(s2 ihZ)kJ1~kr !.

~B6!

Equation~B6! becomes the first of Eqs.~15! after recalling
that cosw5x/r and that the Laplace transform ofJ1(kr) can
be evaluated through the relation

E
0

1`

dke2skJ1~kr !5
1

r

~s21r 2!1/22s

~s21r 2!1/2
. ~B7!

APPENDIX C: DERIVATION OF THE VECTOR
GAUSSIAN X WAVE

Substituting Eq.~17! into Eqs. ~8! and passing to pola
coordinates we obtain

Ex~r' ,Z!5
E0s2

2p E
0

`

dk keihkZe2k2s2/2E
0

2p

dueikr cos(u2w),

Ez~r' ,Z!52
E0s2

2ph E0

`

dk keihkZe2k2s2/2

3E
0

2p

dueikr cos(u2w)cosu. ~C1!
8-8
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The integrals overu can be performed by again exploitin
the Anger-Jacobi relation thus obtaining

Ex~r' ,Z!5E0s2E
0

`

dk keihkZe2
k2s2

2 J0~kr !,

Ez~r' ,Z!5
E0s2

ih
coswE

0

`

dk keihkZe2k2s2/2J1~kr !,

~C2!

whereJn(j) is the Bessel function of the first kind of orde
n. The above integrals cannot be analytically evaluat
However we con convert both of them into two series af
noting that exp(ihkZ)5(n50

` (ihkZ)n/n! which, inserted into
Eqs.~C2!, yields

Ex~r' ,Z!5E0s2(
n50

1`
~ ihZ!n

n! E
0

`

dk kn11e2k2s2/2J0~kr !,

Ez~r' ,Z!5
E0s2

ih
cosw (

n50

1`
~ ihZ!n

n!

3E
0

`

dk kn11e2k2s2/2J1~kr !. ~C3!

Both the integrals appearing in these equations can be
lytically evaluated from the relation

E
0

`

dttm21e2p2t2Jn~at!

5

GS n

2
1

m

2 D
2pmG~n11!

S a

2pD n

1F1S n

2
1

m

2
,n11,2

a2

4p2D ,

~C4!

valid for Re(p).0 and Re(m1n) @20#. Here G(j) is the
Euler Gamma function and1F1(a,b;j) is the hypergeomet
ric confluent function defined by

1F1~a,b;j!5 (
n50

`
~a!n

~b!n

jn

n!
, ~C5!
ct

ct

03660
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a-

where (g)051 and, forn>1, (g)n5g(g11)(g12)•••(g
1n21) ~Pocchammer symbol!. Exploiting Eq.~C4!, and the
relation cosw5x/r, Eqs.~C3! become Eqs.~18!. The expres-
sion for the transverse part of the field on the axisr'50 can
be explicitly evaluated. From the first of Eqs.~C2! we obtain

Ex~0,Z!5
E0s2

ih

]

]ZE0

`

dk eihkZe2k2s2/2. ~C6!

The integral appearing in this expression can be evalua
through the relation

E
0

1`

dt e2(at212bt1c)5
1

2
Ap

a
e(b22ac)/aerfcS b

Aa
D ,

~C7!

valid for Re(a).0, where erfc5(2/Ap)*j
`du exp(2u2) is

the error function. Exploiting this integral, Eq.~C6! becomes
Eq. ~19!.

APPENDIX D: DERIVATION OF EQ. „22…

Since the integral in Eq.~21! is not always convergent, we
replace it with the expression

G~R'uZ!5
1

~2p!2ih
E d2k'

eik'•R'

uk'u
e2(e2 ihZ)uk'u,

~D1!

wheree.0 and the limite→01 is meant to be taken at th
end of the calculation. The introduction of the factor e
(2euk'u) inside the integral follows a standard regularizati
procedure, usually employed to deal with distributions. N
that, from the definition of the fieldT in Appendix B@see Eq.
~B1!#, Eq. ~D1! can be rewritten as

G~R'uZ!5
1

~2p!2ih
T~r' ,Z,e!. ~D2!

Therefore, inserting Eq.~B3! into Eq. ~D2! we obtain Eq.
~22!.
ys.
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