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A vector propagation scheme for describing electromagnetic nondiffracting beamawves is introduced.
In particular we show that, from the knowledge of the transverse field components on a given transverse plane
and at a fixed instant, it is possible to predict the whole electric field everywhere which in particular allows us
to investigate thémagingproperties of nondiffracting beam. Furthermore, we show that the longitudinal field
component crucially depends on the pulse velocity and that it can be neglected only if the velocity is slightly
greater tharc. The proposed formalism is tested by means of two examples, the vector fundamental and
GaussiarX waves which admit analytical treatment. As an application of the propagation scheme, we derive in
closed form the expressions for the field propagator showing that its transverse component formally coincides
with one of the scalar fundamentélwave.

DOI: 10.1103/PhysRevE.69.036608 PACS nunierd2.25.Bs, 41.20.Jb, 02.90p

I. INTRODUCTION >c. In the case of electromagnetic waves this property is
often referred to as the superluminality of nondiffracting
The investigation of nondiffracting three-dimensional pulses. Besides, the fact that the allowed plane waves must
waves has attracted the interest of many researchers in thelong to a surfacé cong in the three-dimension#l-space
past decades starting from the pioneering paper of Durniimmediately implies(due to the Parseval theorgrthat the
et al.[1], in which they reported the first experimental inves- total energy of the field is divergent. At a first glance b@ih
tigation of an optical monochromatic diffraction-free beamand(b) properties of nondiffracting beams seem to be serious
whose existence had been theoretically predicted by Strattoshortcomings against practical realizability and usefulness of
[2]. In the polychromatic realm, the most interesting generthese rather exotic pulses. Superluminaliy seems to be a
alization of the original monochromatic Bessel beam are theiolation of the special theory of relativity and, particularly,
limited diffraction pulses introduced by Lu and Greenleafof the relativistic causality; the infinite content of enefiy,
[3,4] (X waves. An X wave is a solution of the wave equa- on the other hand, seems to make these objects definitively
tion which rigidly travels along a directiofsay thez axis  not physical. However, it is obvious that no violation of rela-
with a fixed velocity; this explains why these fields havetivity can arise since nondiffracting pulses @eactsolutions
been investigated, experimentally and theoretically, both irof the relativistic covariant three-dimensional wave equation
acousticg5,6] and in electromagnetisify—11]. [8]. As far as(b) is concerned, we note that nondiffracting
From a theoretical point of view, many approaches havéheams clearly exhibit atationarycharacter. In fact, the only
been proposed for describing nondiffracting way&2-15  temporal dynamics is a pure translation of the whole packet
and their main propagation features have been understoodt velocityV. It is obvious that a stationary state is rigorously
The most striking properties are as follows) nondiffract-  achieved by any physical system only after an infinite long
ing waves have a velocity which is greater than the veloc- transitory during which the sources continuously provide en-
ity ¢ of plane waves traveling in the medium aff)) that  ergy to the system. An analogous situation in optics is that of
their total energy turns out to be infinite. Both of these prop-a monochromatic paraxial beam which is obviously station-
erties are direct consequences of thepace structure of ary and also possesses an infinite energy; however the model
diffraction-free fields: they are a superposition of all theis widely employed to describe actual fields. Therefore, we
plane waves whose wave vectors belong to a fixed cone afonclude that nondiffracting beams describe limiting cases of
semiaperture anglg¢. These plane waves constructively in- actually feasible fields. The analogy between nondiffracting
terfere only at the cone axis and it is straightforward to provavaves and paraxial beams goes a step further upon noting
that the intersection point of any wavefront with the@xis  that both the fields posses finite powers over any transverse
travels along the axis itself with a velocity equaldtcosy  plane.
In the present paper we analyze electromagnetic nondif-
fracting beams in the light of two main features. First, the
*Electronic address: alessandro.ciattoni@aquila.infn.it electromagnetic field has an intrinsic vector structure and, in
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the case of nondiffracting beams, the coupling among thas an integraZ-dependent transform of the boundary trans-
three Cartesian components of the electric field must be af¢erse field distribution. More precisely we derive the expres-
fected by the absence of diffraction. To the best of oursion for the field propagators in closed form and we find that
knowledge, the vector structure of the waves has been the transverse component propagator coincides with the tem-
investigated only by Recami in Reff7] where the author poral derivative of the fundamentxlwave. This appears to
imposes the shape invariance condition to the Hertz potentidle & relevant result since it points out that the role of the
and then deduces the electromagnetic field in the case of tHendamentak waves, in the general theory of nondiffracting
fundamentalX wave (which admit an analytical treatmeént beam, is more important than an elegant analytical result.
Second, we are interested in timaging properties of non-
diffracting beams. All theoretical approaches describe a non- Il. VECTOR X WAVES
diffracting beam as a suitable superposition of monochro-
matic Bessel beams weighted by an arbitrary function
playing the role of a spectrum. However, the arbitrariness of
the spectrum has never been exploited for relating the field & A P
an arbitrary transverse plane to its distribution over anotherE of the electric fieldE=Re E] in the form
transverse plane or, in other words, to investigate the imag-
ing properties of a nondiffracting beam. The only attempt in E,(r,,zt)= i,:l(rl Z,t),
this sense is furnished by Saari and Sonajalg in RES], 0z
where the authors employ the pulsed Bessel beams they in- .
troduce as a point-spread function which shows a well- E,(r, ,z,t)=—V -F (r, ,z1), (N]
constrained support but, at the same time, has an excellent A A . A
capability to maintain the image focused without any spreadvhere Re is the real pant, =xe+ye,, V, =dg+ 4,
over large propagation distances. E —E,6+E,8,, andF, —F,&+F,8, is a suitable analytic

Starting from an exact vector solution of Maxwell equa-signal. It is easy to prove that Maxwell's equations are sat-
tions in vacuum, we impose each Cartesian component tgfied if
fulfill the diffraction-free condition, i.e., to depend arandt
only through the combinatiod=z—Vt; thus, we obtain an (" 2, ik, i (k2 o)
expression representing any vector electromagnetic nondif- F1 (It ’Z't)_JO d“’f d%k e e, (ky ),
fracting beam. We show that the field angular spectrum is ()
two dimensional and that the spectrum of the transverse
components X andy componentscoincides with the two-  \wherek, =k, + kyéy, d%k, =dk.d Ky, ﬁL:ﬁxéx+Eyéy is
dimensional Fourier transform of the field at the plabe i i

p an arbitrary vector spatio-temporal spectrum, akg

=0. On the other hand, the spectrum of the longitudinal _— m (where we choose the main branch of the
component is easily related to the spectrum of the transvers&)mmex square roptNote thatF, is a superposition of all
part. Therefore the knowledge of the transverse part of thg,e plane waves whosecomponent of the wave vector is
field atZ=0 is sufficient to predict the nondiffracting beam positive (homogeneous wavesor imaginary (evanescent
for a!l Z and thl_Js we are in the position to investigate its.waveé so that, since in Eq2) the frequencieso are posi-
imaging properties. As a second relevant result, we obtaiye the field represents the most general pulse propagating
that the longitudinal component has an order of magnitudg;om |eft to right along thez axis. It is also worth noting that
which is roughly that of the transverse part multiplied by the introduction ofF, allows a complete vector description
VV?/c?—1, thus concluding that the packet velocity is cru- of the electromagnetic pulse.
cial in fixing the relevance of the component. Therefore, Let us now investigate the dynamics of nondiffracting
the longitudinal component is negligible only\fis slightly ~ ejectromagnetic pulses. The standard definition okavave
greater thanc and becomes dominant for velocity much js a solution of the three-dimensional wave equation fulfill-
larger thanc. As a further result we derive a relation con- ing the conditionE(r, ,z,t)=E(r, ,z— Vt), expressing the
necting the field longitudinal component to the transversqact that each Cartesian component of the electric field must
ones in terms of an integral transform at each transversge g shape invariant pulse. From Ed) it follows that this

plane. As examples to apply the proposed approach we insondition is attained if the fiel@, is nondiffracting, that is
vestigate two nondiffracting beams; the first is the vectorg gay jf

generalization of the well-known family of multiple temporal

Let us start by considering an exact integral representation
f the electromagnetic field propagating in vacuum. For our
urpose, it is convenient to write the complex analytic signal

derivatives of the fundamentl wave introduced by Lu and Fo(r,z,t)=F, (r, ,z—Vt). (©)]
Greenleaf4], whereas the second deals wilwaves whose _ _ _ _
distribution atZ=0 shows a Gaussian profile. Since Eq/(2) describes any pulse propagating along the posi-

Our scheme for describing electromagnétiwaves is, in  tive z axis, it is evident thaF, fulfills Eq. (3) only if the
addition, exploited to introduce a propagator approach. Inelationk,=/V holds for all its plane wave components,
order to place into evidence the fact the the whole nondifthat is, if the spectrum is given by
fracting beam is fixed by the boundary distribution of the
transverse part of the field &=0, we derive a general = _3 ( @
relation expressing the field at an arbitrary transverse plane Frlki @) =A,(k,0)d] klwk,) V)’ @
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wheres(&) is the Dirac delta function andl, is an arbitrary
complex vector. Equatiod) is easily interpreted as the re-
quirement that all the plane waves Bf share a common
phase velocity along theaxis (v,=c?k,/w) given byc?/V.
Since|v,|<c, we recover the conditiol’>c expressing the
well-known superluminality of theX waves. Note also that
Eq. (4) implies k,= 5|k, |, where =(V?/c?—1)" %2 so
that the wave vectors of all the plane waves forming a non
diffracting beam belong to a cone whose semiaperture ang
¢ (called in literature Axicon angjes given by the relation
cotyy=7 [17]. Introducing Eq.(4) into Eqg. (2) and perform-
ing the integral ovew we readily get

Fi(r.2)= f d*k eeel T k), ()
whereZ=z—Vt is the longitudinal distance in thsuperlu-

minal) reference frame where th¥ wave is at rest/k, |
= JKZ+K2 andT, (k)= (7?/V)A, (k, ,nV|k,]). Note that
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state problem in its rest frame where the knowledge of the
field on a transverse plane is sufficient to predict the field
everywhere. In this perspective, it is also worth noting that,
because of the arbitrariness of the boundary distribution

IAEl(rL,O), optical X waves allow to accomplish a sort of
diffraction-free transmission of arbitrary two-dimensional
images[16].

- A related feature of nondiffracting pulses is a strong
lgpace-time couplinffl8] characterizing their structure. In or-
der to clarify this point, let us consider one of the Cartesian
component of the field in Eq$8) (say thex componentsat

the planez=0 at any instant (so thatZ=—Vt), that is to
say

IAEX(rL,O,t)=f d?k, e e VIKIE (k). (9)

From this expression we note that the spatial and temporal
features of the pulsesuch as the transverse width or the time

f, is an arbitrary complex vector and, in order to underst anyyration are related to the exponentials containmgandt,

its physical meaning, it is sufficient to substitute E5).into
the first of Egs.(1) [obtaining a shape invariant field
E, (r,,zt)=E,(r, ,2)], to evaluate it aZ=0 and to invert
the resulting Fourier integral, thus getting

- 1 -
fL(kl):WEL(kL)! (6)
where
_ 1 e
Ei<kl>=(2m2fd2ue CLE (0 (@)

is the two-dimensional Fourier transform of the analytic sig-
nal of the transverse electric field evaluated a0. Substi-
tuting Eq.(6) into Eq.(5) and the resulting field into Eq4)

we obtain

E.(r, ,Z):J d2k ek el LIZE (k)),

. 1 . : k -~
Ey(r..2)= —J dzkie'kwe'"'kﬂz( - —l)-Eﬂku.
Y |ki|

8

Equations(8) contain the expression for the most general

respectively; both the exponentials contdin and are
weighted by the spectruii, . Therefore the spatial and tem-

poral behaviors of the pulse are dictated fyr, ,0) at the
same time, resulting in a high correlation between spatial and
temporal featuregspace-time coupling

The field components in Eq$8) are given by Fourier
integrals and, as a consequence, they are square integrable.
This implies that the power carried by the field is finite. In
this sense, th& waves are more realistic than their mono-
chromatic counterpart, the Bessel beams, whose power is
infinite. The power of thg-field component (=x,y,z) over
a transverse plane at fixeflis W,(Z)=fd?r, |E;(r, ,2)|?
that is, with the help of Eq948) and the Parseval theorem,

W2)=wi=2m? [ d, Bkl (10

showing that thgpower of any Xvave does not depend @h

In turn, the total energ)UJ:ffde W,(2) is a divergent
quantity as it was to be expected in connection with the
stationary nature of the considered fields. In fact, a stationary
state is rigorously attained only after an infinite transitory
evolution during which the sources continuously provide en-
ergy to the field, thus justifying the infinite amount of energy.
In this perspective, th&X wave situation(which is usually

electromagnetic nondiffracting pulse and they deserve SOMEighly nonmonochromatics quite close to that of a mono-

discussion. First, note that if the transverse fi|dis known
atZ=0 (or, equivalently, at an arbitrary plane orthogonal to
the direction of propagation Eq. (7) vields E, (k,) and
hence Eqs(8) furnish the field at alZ. Thus, the knowledge
of IAEL on a transverse plara a given instants sufficient to

chromatic paraxial field in vacuum which is clearly a station-
ary field and generally possesses an infinite amount of en-
ergy (even if its power over any transverse plane is finite and
independent of). In this perspective it is interesting to com-
pare the first of Eq98) with the expression for the analytic

predict the pulse evolution. This property does not generallpidnal associated to a monochromatic paraxial bgamwpa-

hold for a pulse propagating in vacuum whose description i9ating in vacuum namely,
possible only if the transverse electric field is known at any

time on a given plane. The physical origin of this peculiarity
lies in the “rigid” motion characterizing nondiffracting
pulses. Therefore thé wave description reduces to a steady-

EL(H Zt) :ei(koz—wt)J' dzkleiki<rie7i|kL|2/2kozEL(kl),
(11
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wherew is the frequency of the field wherekg= w/c. The . o \ngn o
formal analogy between the slowly varying amplitude of Eq.  E{"(r, ,2)= Eo(.—) — T
(11) and the first of Eqs(8) is evident. 1) 0Z" [(c—inZ)*+]r |°]
From the second of Eg$8) we note that the longitudinal (14)

componentk, of the X wave is completely fixed by the \ich are easily recognized to be the well-known family of
boundary transverse componerits (r ,0), in agreement derivatives of theX wave originally introduced by Lu and
with a well-known property of the electromagnetic field in Greenleaf4,17]; we will refer to this family of limited dif-
vacuum[19]. The expression foE, reveals that, roughly fraction beams as the fundamenkawaves. Therefore, Eq.
speaking,|IAEZ|~|IAEi|/77 so that the faster th& wave the (13 contains the spectrum of the electromagn&iwaves
greater is the longitudinal component in comparison with theVhose transverse part reproduces the fundamettaaves.
transverse ones. This feature can be understood bearing Ti'€ longitudinal component of the electric field is obtained
mind that anX pulse is the superposition of all the plane after substituting Eq.(13) into the second of Egs(8),
wave whose wave vectors belong to a cone whose semiap@mely,

erture angle isy=arctan(l#) = arctan/VV?/c?— 1 so that the

faster theX wave the more open is the cone. Since in vacuum EOr, 2)=E oX 1— (o—inZ)

the electric field of each plane waves is orthogonal to the —2 '+’ o, 7l |2 [(c—inZ)%+]|r |21¥3)"
wave vector(transversality, the more the cone is open the

greater is the contribution of each plane wave to the longi- R io o

tudinal component of the electric field. We conclude that the Egn)(rL JZ)= 7 &Ei"’l)(rL , Z) for n=1. (15

longitudinal component of the electromagneXiovave can

be neglected only ¥ is slightly greater thae, showing that Equationg14) and(15) contain the exact expressions for the

thi OSOC alar aﬁproachlgener{illy gails.h Ifl’ for ((aj?(arrpbé, electromagnetic fundamentdlwaves and they represent the
<L & we .a\./en> proving that the 0”9'“! Inal com-yector generalization of the well-known scalar fundamental
ponent is negligible; on the other handMf-\2c it follows  x'\yaves The parameter is directly related to the width of
that n<<1 so that the longitudinal component tends t0 beé-e hyjse az =0 (waist and it is worth noting that the fields

come dominant. depend orr, andZ only through the dimensionless quanti-

The connection between longitudinal and transverse CONMYag r, lo andZ/o. Note that the firsX wave of the family
ponents can be expressed in a significant way combining th&zo) has a diverging power at each transverse plab&

%St and the second of Eg&3), thus getting(see Appendix fixed) since, for|r, | large, E@~|r,|"L. For n=1 the X

waves of this family are not affected by the above shortcom-

ing and approach physically realizable fields. In Fig. 1 we
. 1 ro—r, . plot the normalized Cartesian componegigx,0,2)/E, and
Eur . 2)=5— f d?r| —'Ei(r,2), (120 E,(x,02)/E, of the electric fieldreal parts of Eqs(14) and
m ro=ril (15)] of the fundamentah= 1 vectorX waves evaluated for
variousV/c. The x component obviously shows the typical
spreading of the fundamentglwaves. Thez component, on
the other hand, vanishes Zt=0 [as a consequence of the
reality of the spectrum in Eq13)], then rapidly grows for
increasingZ>0 up to a maximum, and finally vanishesAas
goes to infinity. Note that, as expected, the fasterdiveave
the greater is the maximum of the longitudinal component.

We wish now to apply the approach introduced in theSince at the plan&=0 E, vanishes, the longitudinal com-

above section to the relevant cases of vector fundamental ponent is not peaked at the origin but exhibits two symmetri-
waves and Gaussiax waves. cal lobes. In Fig. 2 we report the level plot [d&,|/E, of the
n=1 vectorX wave (characterized by a velocity=1.0%x)
at three transverse planes, showing the above-mentioned
lobes and their evolution.

which is a relation givings, at an arbitrary transverse plane
(i.e., for Z fixed) once theE, is known on the same plane.

. TWO EXAMPLES OF VECTOR X WAVES

A. Vector fundamental X waves

Let us consider the family ok waves whose spectrum is

given by B. Vector GaussianX wave
=(n) Eqo? 1ok, A =)y 2 Consider now arX wave whose boundary field distribu-
ElV(k,)= o (alk )" e” g =E" (k. )6y, tion is
13 o -
13 E.(r, ,0=Eqe 7%, (16)

wheren is a positive integer, whereds, ando>0 are two  whereE, and 6>0 are real constants. This is a Gaussian
real constants. Substituting E@.3) into the first of Eq¥8) distribution of waisto centered at, =0 and its spectrum is
we get(see Appendix B readily obtained by inserting Eq16) into Eq.(7), namely,
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where I'(¢) is the Euler Gamma function, whereas
(17 1F1(a,B;€&) is the hypergeometric confluent function. Equa-
tions (18) contain the expressions for the vector Gaus${an

Substituting Eq(17) into Eqs.(8), we obtain(see Appendix wave. Note that, as for the fundamentalaves, the Gauss-

C

ian X wave depends on, andZ only through the dimen-
sionless quantities, /o andZ/o. Note, in addition, that the
power of each component is finite as it is clearly shown by

. o[ mZ\"iV2)" [n+2 substituting Eq(17) into Eq. (10). Even if the field compo-
Ex(ri’z):EOnZO e r g Eq q.(10) p

o n!

n+2  |rf]

XF ==
k1| —5 20?2

ingy2\o/izo | o n!

Efr.,2)=

n+3_  |r?|

X 4F 2;
P17 552

2 nents are given by series, Eq$8) are suitable for numerical
analysis since it can be proven that foy4/ o) <8 the series
can be truncated up to the first two hundred terms and there-
fore easily computable by a standard computer. In Fig. 3, we
plot the normalized electric field componeijtsal parts of
Egs.(18)] of the vector GaussiaK wave, for variousZ/o.

Eo (X - nZ\"(i \E)n n+3 The evolutions of both the transverse and longitudinal com-

5 ponents are quite similar to that of tine=1 fundamentaX
wave.

The expression of the field on the propagation axis

(18) (i.e., forr, =0) can be expressed in closed form @se
Appendix Q
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Z/6 =0.01

FIG. 2. Level plot of|E,|/E,
of the n=1 vector X waves at
three transverse planes for a ve-
locity V=1.0%.

can be avoided, as usual in optics, by introducing a suitable
, propagator directly relating the propagated field to its bound-
ary distribution. This goal is achieved by substituting E4).
(19 into Eq. (6) and the resulting spectrum into E¢p), thus
getting

E,(0.2)=E,

_ Z = Z
l+i\/77< 77) e(’?z"z")zerfc< U )

\/50' i\/za

whereast,(0,2) =0; here erfcf) is the analytical continu-
ation of the error function erf@f0=(2/\/?)f"§duexp(—u2). . 0 Dioa

In Fig. 4 we plot the normalized electric fie[deal part of Fu(ry ’Z):J dr{G(r.—r[2)EL(r[,0), (20
Eqg. (19)] of the vector GaussiaX wave as a function of the
normalized propagation distance, togetki@r comparisop ~ where
with the analogous field for the=1 fundamentaX wave. R

1L

K|

€ el nlk 1z (22)

1
G(RL|Z):7J d?k,
IV. PROPAGATOR APPROACH (2m)%i 7
In Sec. Il we have developed a fully vectorial scheme for i R = —r'). The integral in Eq(21) turns out to be
describing any electromagneficwave traveling in vacuum. _; o ema A -
: given by (see Appendix D
Our approach allows us to evaluate the field forallandZz,

once the transverse part of the field is knowiZat0, and is 1
essentially based on the use of the Fourier integral. However, G(R,|2)= 5= , (22
7 - . L 27i ; 2 2112
although intuitive and efficient, the use of the Fourier space 7 [(e=inZ)*+|R.[|"]
V/c=1.05 V/c=105
0.15

08 0.1 ~

06 0.05 AN : -

- // \ - ’ “\\\\\ FIG. 3. Normalized Cartesian
04 : /////“““ 5o :SS\\&Q\Q\\‘““, components E,(x,0Z)/E, and
<02 //fffff’f“‘\““ -0.05 W\‘t\:\g‘ E,(x,02)/E, of the electric field

0 7 '//"-‘:;‘Q\‘\ ) % 0.1 :\\\\\‘\“ [real parts of Eq¥18)] of the vec-

-0.24 \ ‘W" N\ tor GaussianX waves evaluated

0 b '%Ww' for variousV=1.05.

0.5 ""‘""fo,fé,‘%

-5
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In  Ganssion X wave the_general theory,_ they play the role of propagatarsce
gl Lo Fundamental n=1 X wave their width, proportional tce, is assumed to go to zero
0.6f V. CONCLUSIONS
| Starting from an exact solution of Maxwell's equations
}0_2_ desgriping an arbitrgry pulse_ propagating along th_e pos_itive
Z axis in vacuum, with the aid of the propagation invariant
of requirement, we have obtained a vectorial expression
o2 describing any electromagnetic limited diffraction beam

(X wave in free space. Our scheme predicts that, once the
-04 : : : : : ‘ distributions of thex- andy-field components are known at a
transverse plane of the reference rest frame of the pulse, the
vector X wave is known everywhere and at every time. The
physical origin of this peculiar feature turns out to be related
to the essential stationary characteXafiaves. Furthermore,
we have shown that the longitudinal field component can
where the limite—0" has to be taken afte& has been be optained from its transverse counte.rparts.throqgh a suit-
A ) ) ) able integral transform whose kernel is derived in closed
convolved withk, (r,,0) in Eq.(20). Inserting the resulting  orm |n addition, theX wave velocity has been shown to
field F, into Egs.(1) we readily get affect in a relevant way the magnitude of the longitudinal
component; the faster thé wave the greater the compo-
, oA nent in comparison with the transverse part. In particular, we
E.(r, 'Z):j erLGL(rL—rJZ)EL(rL,O), have demonstrated that the longitudinal component cannot
be neglected if th&X wave “velocity” is greater thany2c.
. . The vector propagation scheme has been employed for de-
Ea(r, ,Z)=f d’r[G,(r, —r[2)-E.(r],0), (23  scribing two examples of vectot waves, the family of fun-
damentalX waves and the Gaussian one: the former repre-
where sents the electromagnetic vector generalization of the well-
known X waves of Lu and Greenleaf, whereas the latter
(e—in2) example deals with the description of atwave whose
G, (R |2)=5— - 5 et transverse part distribution is Gaussian over a transverse
27 [(e~i9Z)*+|R,|?] plane. Both these examples exhibit the well-knowshaped
profile in the transverse part of the field, whereas the shape
R, of the longitudinal component exhibits two symmetrical
= —— >3 (249 lobes(with respect to the plane containing the pulse polar-
7 [(e=in2)*+|R.["] ization direction and the axis) diverging from thez axis. As
) ) ) a further application of the proposed propagation scheme, we
Equations(24) contain theexact expression®r the X wave  payve set up a propagator approach. More precisely, we have
propagators. _ . _derived closed-form expressions directly joining the vedtor
The physical interpretation of the propagators is easil{yaye in the rest frame to the distribution of its transverse
obtained by considering axi wave whose boundary field is part over a transverse plane. Apart from the conceptual value
of the formE, (r,,0)=Eqd(r,)e, which, substituted in Eq. of this approach, it is worth noting that the propagator kernel
(20), vyields E,(r,,Z)=E.G,(r,|2)e, and E,(r,.2) for the transverse part is deeply connected torthel fun-

—E,G,(r,|2)-&,; therefore the propagators represenp@n damentalX wave.

wave whose boundary distribution is & peak aroundr

=0. This is consistent with the fact thaG,(r,|0) ACKNOWLEDGMENTS
=el(2m)(€?+|r,|?)~%?is, in the limite—0", a represen-
tation of the two-dimensional Diraé function. ForZ>0 e

FIG. 4. On axis normalized transverse comporgt0,2)/E,
of the electric field as a function af= 5z/(\20) for the vector
Gaussian and fundamentat 1 X waves.
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It is worth noting that the field§&(r,|Z) and G, (r,|Z)
essentially coincide with the zeroth and first fundameital
waves(see Eq.(14)). Therefore, the fundamentd waves Inverting the two-dimensional Fourier integral of the first
are more relevant than simple analytical examples since, iof Egs.(8) we get

APPENDIX A: DERIVATION OF EQ. (12)
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1

ek IZE (k)=
(k)=

fdzrie*‘ki'riél(ri,Z),

(A1)
which, substituted into the second of E®), yields (after
interchanging the integration order

IAEz(rL ,Z):f dzriWL(ri_ri)'EL(ri Z),  (A2)

where
1 elki Ry
andR, =r, —r | . Exploiting a well-known property of the

Fourier integral, we change EGA3) into

ek Ry
k.|

i
— 2
W, (R,)= n(zw)2vif dk,

V,0(R)). (A4)

n(2m)?

The integral defining can be easily evaluated by introduc-
ing polar coordinates according to =k(e,cosé+e,sin )
andR, = R(éxcos<p+éysin ¢), thus getting

= [P ikReoso- ) ” 2m

OR,)=| dk| e =27 | dkJ(kR)= 2,
0 0 0 R

(A5)

whereJy(¢) is the Bessel function of the first kind of zeroth
order. Substituting Eq(A5) into Eq. (A4) and the conse-
guent result into Eq(A2), we readily obtain Eq(12).

APPENDIX B: TRANSVERSE AND LONGITUDINAL
COMPONENTS OF FUNDAMENTAL X WAVES

Inserting Eq.(13) into the first of Eqs(8) we obtain

n+1 n ik -r
EO)(r, 7z)= 0%~ 7 fdzkie L e ek
2m(in)" oZ" k|
Eosn+1 an
=——— —T(r, ,Z,0). (B1)
2m(in)" oZ"

In order to evaluate the integral defining we use polar
coordinates, according t&, =k(e,cosé+e,sin6) and r,
=r(8Cos+8,sing), thus getting

T(r, ,z,a)zzwf dk e (e=1mDk3(kr),  (B2)
0

where the representatiody(£)=(1/27)[357d6 exdiécos@
—¢)] for the the Bessel function of the first kind of order 0O
has been exploited. The integral appearing in B&) is the

PHYSICAL REVIEW E69, 036608 (2004

Laplace transform of the Bessel function, namely
Jodke SKg(kr)=(s?+r?)~ 2 whose convergence domain
is Re(s)>0 (the square root being evaluated on its main
branch. Equation(B2) thus yields

T(r, ,Z,0)=2m

IO L

which, inserted into EqB1), furnishes the transverse part of
the electric field as in Eq14). In order to derive the expres-
sion for the longitudinal component, let us substitute @)
into the second of Eq4$8). Forn=1 we get

EOSn+1 J an—l

27(im)" X gz 1

EM(r,,2)=—

eikLM
x [ d?k
j Sk

Comparing this expression with E(B1) we readily get the
second of Egs(15). For n=0 we obtain, after passing to
polar coordinates,

e~ (c-imlkl By

E(ZO)( rJ_ !Z) ==

Eos fwdke‘("‘i”z)k
27 Jo

2 .
xf d gekr s~ ¢)cosh. (B5)
0

The integral overéd can be performed by exploiting the
Anger-Jacobi relation exjkr cos@—¢)]
=3n""_i"J,(kr)exdin(#—¢)] thus obtaining

Eos o :
EO(r, ,2)=- %COS(pf dke (=172kg (kr).
0

(B6)
Equation(B6) becomes the first of Eq$15) after recalling
that cosp=x/r and that the Laplace transform &f(kr) can
be evaluated through the relation
1 (s?+r?)—s

T (+r)lz (B7)

+
J’ dkeﬁSk‘Jl(kr):
0

APPENDIX C: DERIVATION OF THE VECTOR
GAUSSIAN X WAVE

Substituting Eq.(17) into Egs.(8) and passing to polar
coordinates we obtain

2 row 2
Er, .2)= Eoo J dk kénkze—kzaz/zf dgelkr coso—¢).
2 0 0
Eongw . 2 2
E,r,,2)=— dk ke 7kzg= ko2
Z( 1 ) 277_77 0

27 .
X J d gelkr cos@=¢)cosg. (C1
0
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The integrals ovel can be performed by again exploiting where (y)o=1 and, forn=1, (y),=y(y+1)(y+2)---(y

the Anger-Jacobi relation thus obtaining +n—1) (Pocchammer symbplExploiting Eq.(C4), and the
relation cosp=x/r, Eqs.(C3) become Eqs(18). The expres-
w _ K252 sion for the transverse part of the field on the axis-0 can
Eu(r,,Z)=Eqo? fo dk ké7*%e™ "2 Jg(kr), be explicitly evaluated. From the first of Eq€2) we obtain
E00'2

2

i Ood k é nkZef k2(r2/2. (CG)

E02)== 57 |

Eo(T
in

E,(r, ,Z)= ———cosg fo dk ke *Ze~K*o*123, (kr),
(€2 The integral appearing in this expression can be evaluated

whereJ, (¢) is the Bessel function of the first kind of order through the relation

n. The above integrals cannot be analytically evaluated.

However we con convert both of them into two series after +°°d _(at?+ 2bt+c) 1 \/; (b2-ag)/a b
noting that expi(k2)=37_(i7k2)"n! which, inserted into fo te ~72Va® erf fa)
Egs.(C2), yields

(C7
< (in2)" (=
Efr, . Z)=Eqo?> U f dk K+ le~K*o*23 (kr), valid for Re@)>0, where erfe=(2/\/7)[;duexp(-u?) is
n=o N 0 the error function. Exploiting this integral, EGC6) becomes
o i
EAr, 2)=——cosg >, —n
X/ n=o0 N APPENDIX D: DERIVATION OF EQ. (22)
* 1 K222 Since the integral in Eq21) is not always convergent, we
x fo dkK™e Ja(kr). €3 replace it with the expression
Both the integrals appearing in these equations can be ana- 1 elki Ry '
lytically evaluated from the relation G(R,|Z2)= _ f d%k, g~ (eminD)lk,|
27)%iy k.|
* D1
f dtt#~ e P] (at) (D
0
wheree>0 and the limite—0" is meant to be taken at the
I VoM end of the calculation. The introduction of the factor exp
275 1ayy w a2 (— €k, |) inside the integral follows a standard regularization
2p*T(v+1) 2P 1F1 >t 1, , procedure, usually employed to deal with distributions. Note

that, from the definition of the field@ in Appendix B[see Eq.
(C4  (B1)], Eg.(D1) can be rewritten as

valid for Re(P)>0 and Rep+v) [20]. HereI'(§) is the

Euler Gamma function angF,(«,8;¢) is the hypergeomet- G(R,|2)= ;T(ri Z,€). (D2)
ric confluent function defined by (2m)%in
o (@) € inserti i i
Fila,Bé)= 2 n =, (C5) Therefore, inserting Eq(B3) into Eq. (D2) we obtain Eq.
n=0 (IB)n n: (22)
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